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Likelihood Inference for Evolutionary Models 

Likelihood is defined as the probability of obtaining the observed data, given a specified 

model.  Accordingly, we need to know the probability distribution of evolutionary 

outcomes.  There are two different ways to construct likelihoods for evolutionary 

observations: (1) take the original trait values (z) and construct a new set of observations 

that are independent, (2) consider all observations jointly, accounting for their mutual 

covariances.   

 

(1) Likelihood of Evolutionary Differences 

Applying strategy (1) to ancestor – descendant sequences, one can look at the 

evolutionary increment in trait values (Δz) between successive samples in the time-series.  

It can be shown that all the models considered in this chapter produce trait differences 

that are normally distributed, with means and variances that depend on the model 

parameters and the ages of the samples (Hunt 2006).  The log-likelihood function for any 

normal variable is the natural log of its probability density function: 
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where M is the mean and V the variance of the distribution of Δz.  Directional evolution, 

random walks, and stasis differ in their predicted means and variances for evolutionary 



differences between ancestors and descendants.  The logic for all the models is similar 

and detailed derivations are provided in (Hunt 2006), and so here we will just sketch out 

the findings for one model, the random walk. Each observed increment is the sum of all 

evolutionary steps between ancestor and descendant.  Each step has a mean of zero (an 

assumption of the random walk), and a variance equal to the step variance.  If t time 

increments separate ancestor and descendant, the mean of this sum is zero and the 

variance of this sum is t times the step variance.  This follows because the mean and 

variance of a sum of independent random variables is equal to the sum of their means and 

variances, respectively.  Moreover, by the Central Limit Theorem, this sum is 

approximately normally distributed as long as t is not too small.  Thus, for the random 

walk, M = 0 and V = t σ2
step.  Substituting these terms in the equation above yields the 

log-likelihood function for a single ancestor – descendant evolutionary increment.  

Because increments are independent, the log-likelihood of a set of increments in a 

sequence is the sum of all the separate log-likelihoods.  The maximum-likelihood 

estimate of σ2
step is that value which yields the highest log-likelihood over all 

evolutionary transitions. 

 

The above assumes that trait means are known without error, which is of course false.  As 

a result, the expected variance of an evolutionary change from ancestor to descendant is 

increased by an amount equal to the sampling variance on estimating the difference 

between the ancestral and descendant means (Hunt 2006).  The same basic logic holds for 

calculating the log-likelihood for phylogenetic independent contrasts under Brownian 



motion, except the sampling error term is somewhat more complex because it must 

include estimation error for the calculated node values (see Felsenstein 1985, 2004). 

 

(2) Joint Likelihood across all Populations  

The second strategy for fitting models to trait data from ancestor–descendant or 

phylogenetic relationships is to consider all observations jointly.  Under all the models 

considered here, the joint distribution of trait values is expected to be multivariate 

normal, with a mean vector and covariance matrix determined by the model parameters 

and the pattern of relatedness.  In addition to the model parameters described in the text, 

this approach requires an extra parameter, z0 that represents the trait value at the root of 

the tree or the start of the sequence.  The details of this approach are described elsewhere 

(Garland and Ives 2000, Blomberg et al. 2003, O'Meara et al. 2006, Hunt 2008), and so 

we will describe only one model, directional evolution (BM with a trend), as an example. 

 

The expected variance in evolutionary outcome in terminal taxon i is equal to the time 

elapsed between the root of the tree and taxon multiplied by the step variance, ti σ2
step, the 

same as noted above.  The expected covariance among terminal taxa is equal to the step 

variance, multiplied by the shared path length between those species, tij σ
2

step.  This is 

equivalent to the time elapsed between the root and the most recent common ancestor of 

taxa i and j.  Terminal taxa that are very recently diverged share most of their path from 

the root, and therefore have high covariance.  Sometimes all the time terms are collected 

into what is called the phylogenetic variance-covariance matrix, C, in which case the 

covariance among terminal tips can be represented as σ2
stepC (see Fig. S1).  Sampling 



error adds to the diagonal of this matrix, increasing the expected variance of outcomes, 

but does not affect covariances.   

 

 

 

Figure S1.—1, example phylogeny of five taxa, with time axis on the bottom.  2, 

the resulting phylogenetic variance-covariance matrix, C.  Diagonal elements 

(variances) correspond to the time elapsed from the root to each terminal taxon.  

Off-diagonal elements (covariances) measure the amount of time between the 

root and the common ancestor of the two taxa in question. 

 

 

For the trend model, the expected (mean) trait value increases linearly with the time, with 

a slope equal to the mean step:  mi = z0 + µstep ti.  Calling this vector of means m, this 

means the probability of observing a vector of trait means across a sequence or tree is 

equal to the density function of the multivariate normal distribution with a mean m and 
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covariance matrix σ2
stepC.  Log-likelihoods are simply the natural logarithm of this 

density function. 

 

The same logic applies to ancestor-descendant sequences, which can be thought of as 

completely pectinate trees with zero-length branches connecting each population to its 

ancestral node (Fig. S2).  The models determine the nature of the multivariate mean 

vector and variance-covariance matrix, which are all that are required to compute the log-

likelihood of a multivariate normal observation. 

 

 

 

Figure S2.—1, example time series with five populations (labeled A – E), with 

time axis on the bottom.  2, the resulting variance-covariance matrix, C.  

Diagonal elements (variances) correspond to the time elapsed from the first 

population to each of the others.  Off-diagonal elements (covariances) measure 

the amount of time between the first population (A) and the oldest of the two 

populations. 
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R objects: paleoTS and phylo classes 

R allows creation of specialized data structures called classes.  In this chapter, we have 

worked with two classes extensively: the paleoTS class for ancestor – descendant 

sequences of trait values, and the phylo class for representing phylogenies.  The 

paleoTS class has four required elements.  These are vectors of means (mm), variances 

(vv), sample sizes (nn) and ages (tt) of each sample in the sequence.  The other 

elements of paleoTS objects are less important; see the help page for as.paleoTS() for 

details.  Many of the functions in the paleoTS package were written to operate directly on 

paleoTS objects. 

 

There are multiple ways of representing phylogenies as data objects.  At present, the most 

common standard is the phylo object from the ape package.  These objects are lists with 

several elements: an edge matrix that specifies the topology, a vector of tip.label for 

the names of terminal taxa, a vector of edge.length with branch lengths for each 

branch, and Nnode, which gives the number of internal nodes in the tree.  The most 

important is the edge matrix that codes for the tree topology.  This matrix has two 

columns and one row for each branch in the tree (internal and external).  In this edge 

matrix, each of N terminal taxa is assigned a number from 1 to N, with internal nodes 

numbered consecutively thereafter, starting at the root.  As an example, consider the tree 

in Figure S3. 

 



 

Figure S3.— Example tree used to demonstrate the phylo object class.  The 

functions tiplabels() and nodelabels() from the ape package have been 

used to label the nodes and terminal taxa according to their numbers.  

 

This tree has the following edge matrix: 

     [,1] [,2] 
[1,]    6    7 
[2,]    7    8 
[3,]    8    1 
[4,]    8    9 
[5,]    9    2 
[6,]    9    3 
[7,]    7    4 
[8,]    6    5 
 

The first row represents the branch that connects node 6 (the root) to node 7; the last row 

connects node 6 to terminal taxon 5 (labeled Taxon E).  For each branch, the left column 

is the ancestral taxon, and the right column is the descendant.  It is informative to look at 
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the edge matrix to understand its structure, but users will almost never perform operations 

directly on it.  Instead, there are a variety of helper functions that manipulate or use trees 

while hiding the underlying representation from the user (e.g., drop.tip, 

extract.clade, plot, Ntip, Nnode, root, axisPhylo, tiplabels, 

nodelabels, multi2di, zoom). 
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