Tracking Species in Space and Time:

Assessing the relationships between paleobiogeography, paleoecology, and macroevolution

Alycia L. Stigall

Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies

Outline

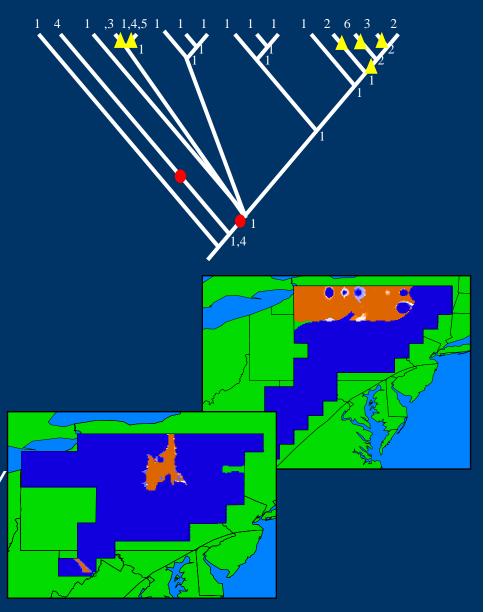
New methods and emerging opportunities in paleobiogeography:

- Biogeographic controls on macroevolution
- Biogeographic range and paleoecology/extinction
- Potential for synthesis

Case Studies:

- Miocene Radiation of Equinae
- Late Devonian Biodiversity Crisis
- Late Ordovician Richmondian Invasion

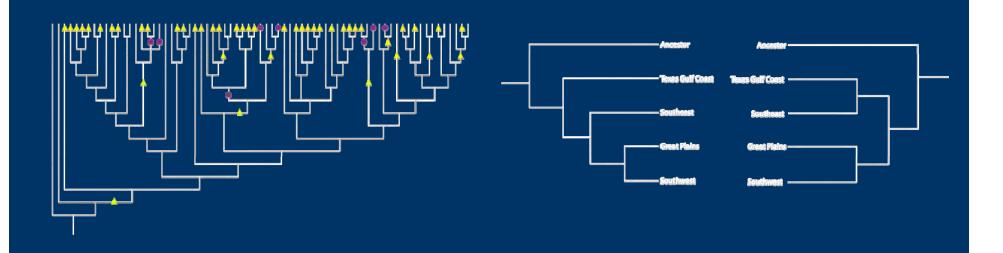
Future research directions


Controls on species range

Historical Factors

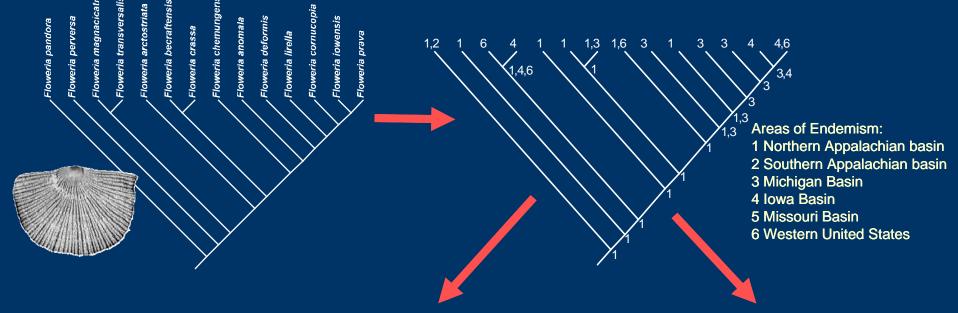
Primary during speciation

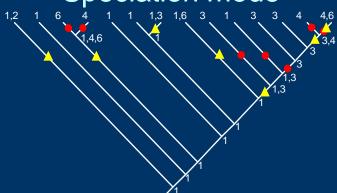
Ecological Factors

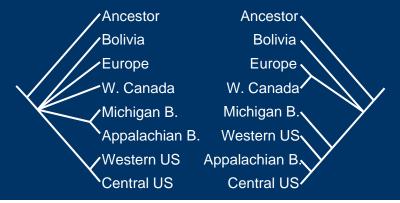

- Primary during species duration & extinction
- Traditionally separate subdiciplines
 - Historical Biogeography
 - Ecological Biogeography

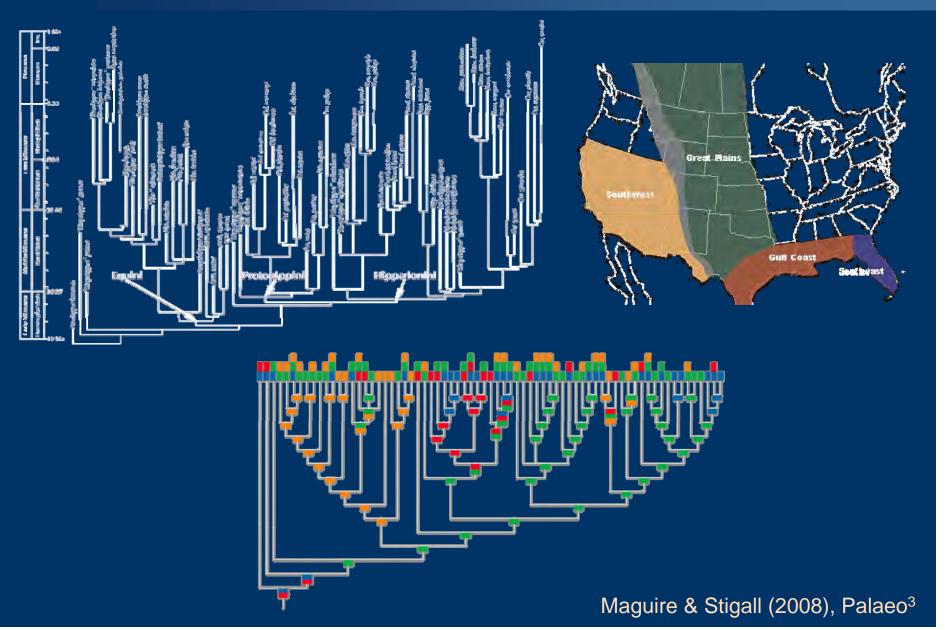
Integrated biogeographic approach, part I

Relationship between biogeography & macroevolution

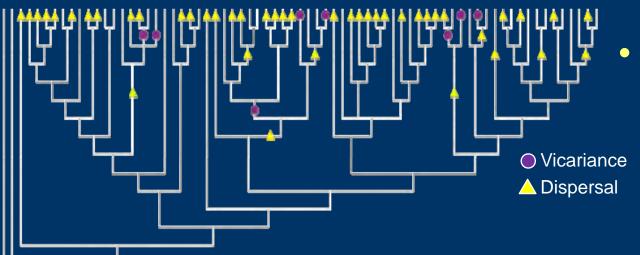

- Research questions:
 - Speciation mode
 - Clade history
 - Adaptive radiations
 - Tectonic vs climatic influences
- Tools: phylogenetic biogeography (detailed in Lieberman, 2000)


Phylogenetic biogeography

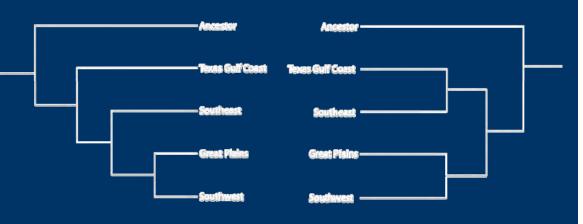

Evolution of biogeographic areas


Speciation mode

Relationship of biogeographic areas

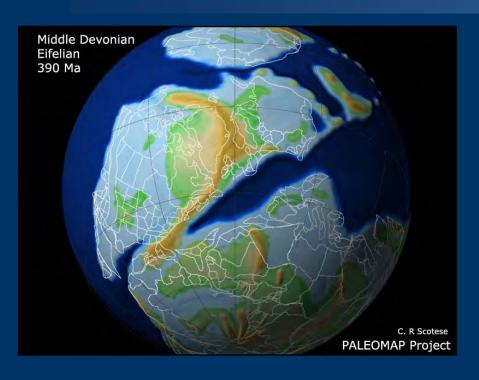


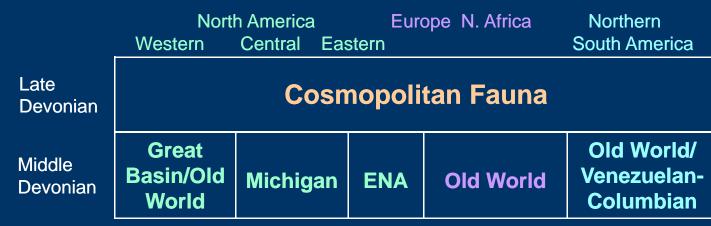
Example 1: Miocene Equinae


Equid Phylogentic Biogeography

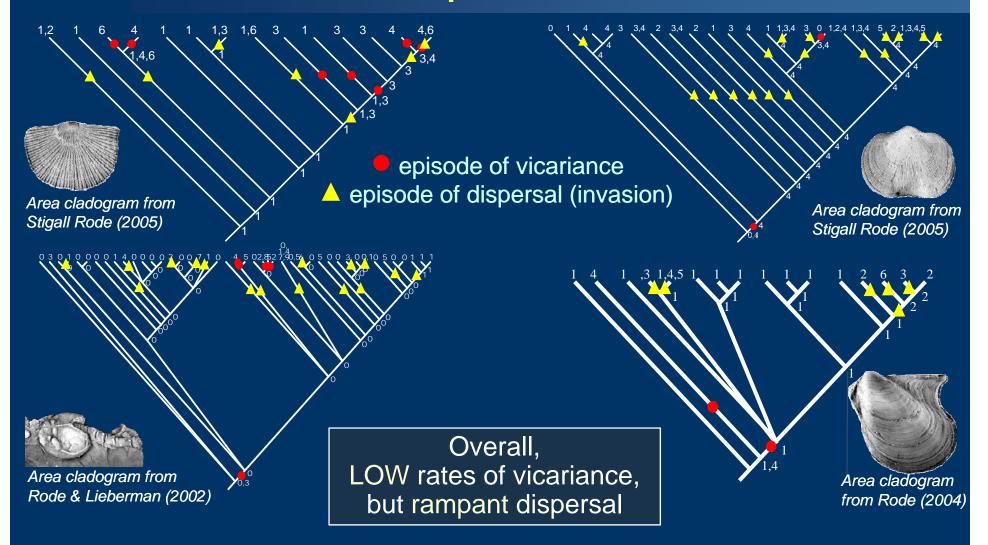
Speciation mode

Dispersal dominant mode of speciation


 Cyclical processes drive evolution of area relationships


Vicariance vs. Geodispersal

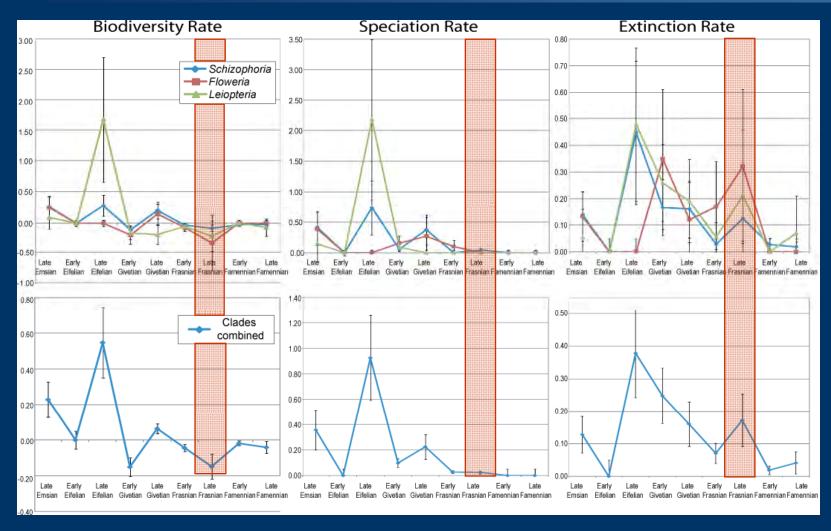
Maguire & Stigall (2008), Palaeo³


Example 2: Late Devonian Biodiversity Crisis

- Species invasions due to continental assembly and trangressions resulted in greatly reduced faunal endemism
- Extinction rates elevated
- Speciation rates depressed

Late Devonian Speciation Mode

 Low vicariance due to lack of opportunities for isolation during invasive regime & contributed to speciation rate decline

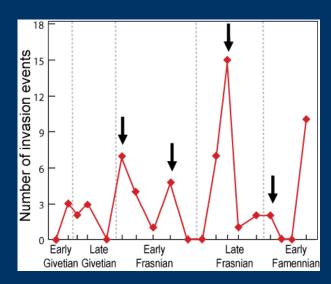

Late Devonian Speciation Mode

- Speciation by vicariance virtually non-existent
 - All speciation via dispersal (i.e. species invasions)

Clade	Number of vicariance events	Number of dispersal events	Percent speciation by vicariance	Percent speciation by dispersal
Schizophoria (Schizophoria)	2	17	11%	89%
Floweria	7	7	50%	50%
Leptodesma (Leiopteria)	2	6	25%	75%
Archaeostraca	6	13	32%	68%
Overall	17	43	28%	72%
Modern Fauna			70%	30%

Stigall & Lieberman (2006), J. Biogeography

Late Devonian Speciation Rate



- Extinction not elevated above background during Late Devonian
- Speciation rate declines to near zero

Late Devonian Speciation Summary

- During the Late Devonian crisis interval:
 - Speciation rates approach zero
 - Extinction elevated, but not in excess of background rates
- Numerous inter-basinal species invasions observed
- Speciation by vicariance virtually non-existent
 - All speciation via dispersal (i.e. species invasions)

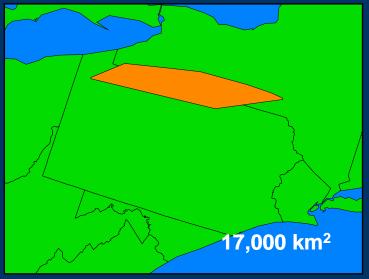
 Breakdown of biogeographic and paleoecologic barriers resulted in shutdown of allopatric speciation

Rode & Lieberman (2004), Palaeo³

Integrated biogeographic approach, part II

Relationship between biogeography & paleoecology

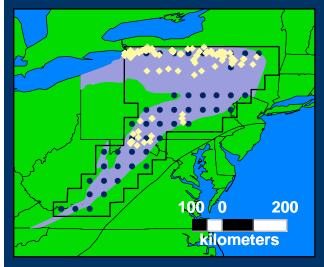
- Research questions
 - Range contractions and expansions
 - Niche evolution vs. niche constancy
 - Habitat tracking of communities vs. individualistic species response
- Tools: GIS-based analyses incorporating environmental variables
 - Provides data amenable to statistical methods of hypothesis testing



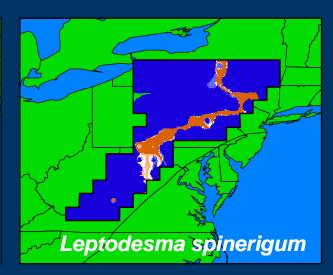
Methods of quantitative range modeling

GIS based approaches

- Polygon enclosure models
 - Requires robust set of species occurrence data
 - Create minimum convex hulls
- Ecological niche models
 - Requires (1) robust set of species occurrence data AND (2) robust set of environmental parameters determined from sedimentological proxies



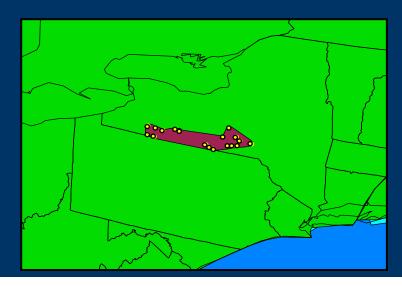
Stigall Rode & Lieberman (2005)

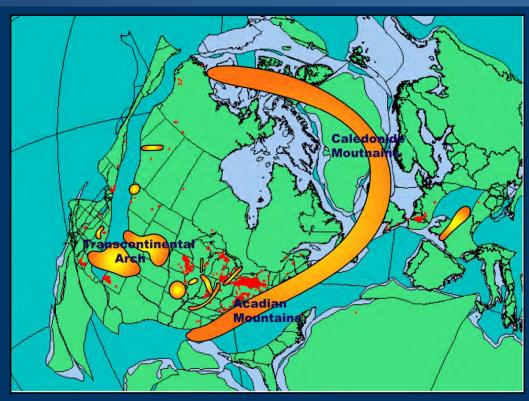

Environmental data and interpolation

Ecological Niche Models

- Predict species' ranges to occupy the geographic extent of the fundamental niche
- Utilize computer learning based (genetic) algorithm to estimate species' fundamental niche from a set of known occurrence sites and environmental data

Data collection


Environmental interpolation


Range prediction

Stigall Rode & Lieberman (2005)

Example 2: Late Devonian Biodiversity Crisis

- GIS-based geographic range reconstruction (methods of Rode & Lieberman, 2000; detailed in Stigall, 2006)
- Over 5000 data points used to reconstruct ranges of 341 species in 19 temporal bins (Rode & Lieberman, 2004)

Geographic distribution of data

Range of *Tylothyris mesacostalis* during Early *rhenana* zone (Late Frasnian): 10,309 km²

Example 2: Late Devonian Biodiversity Crisis

ENM analysis

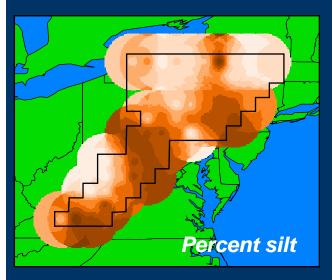
Species occurrence data combined with nine environmental factors:

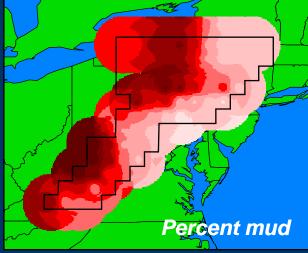
Percent mud, silt, sand

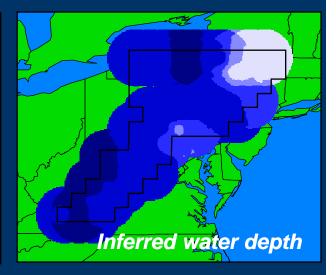
Percent limestone

Depositional environment

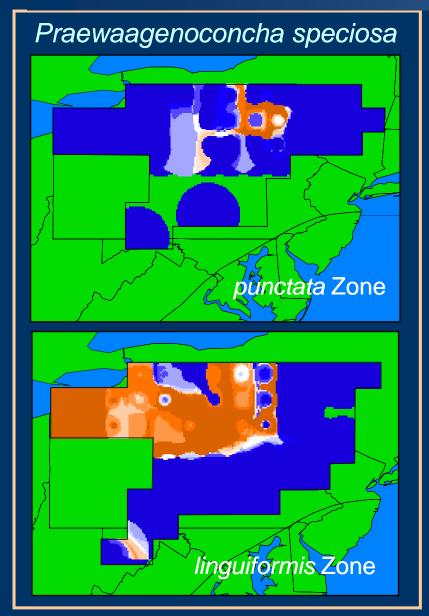
Oxygenation

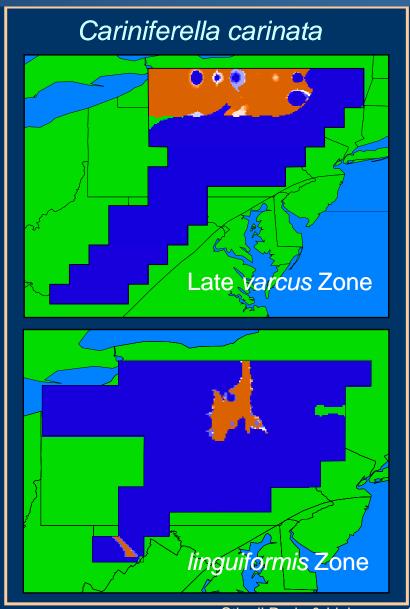

Ichnofacies


Bedding style

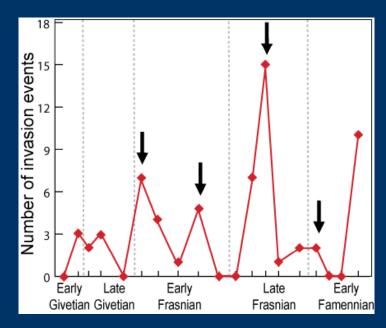

Substrate type

Biofacies


Water depth



Temporal range change


Identify interbasinal species invasions

Example: Pseudatrypa devoniana

Two invasion events:

- 1) Appalachian to Iowa basins in *punctata* zone (mid Frasnian, onset of TR cycle IIc)
- 2) Iowa to New Mexico basins in *rhenana* zone (Late Frasnian, onset of TR cycle IId)

Total interbasinal invasions

Stigall & Lieberman (2006), J Biogeo

Rode & Lieberman (2004), Palaeo³

Examine survival vs. geographic range

1. Comparison of geographic range size vs. survival

Victims

N = 30

Mean range: 6212

SE mean: 895

Survivors

N = 127

Mean range: 15446

SE mean: 3592

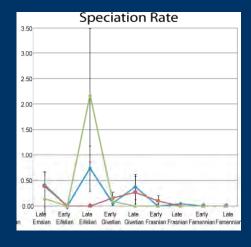
T-test: H_o : $\mu_s > \mu_v$ N=157 p= 0.009

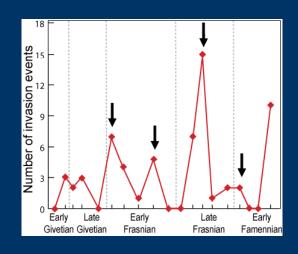
2. Comparison of survival status vs. invasive history

X² table

	Invasive species	Non-invasive species
Extinct	18 27.86	109 99.14
Survive	16 6.14	12 21.86

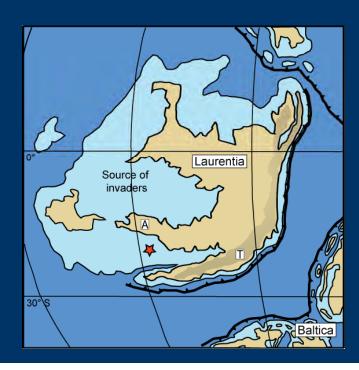
N= 155 p<< 0.001

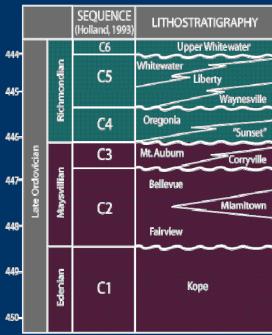

observed/ expected


Integrated biogeographic approach III

Complex feedback loops between biogeography, paleoecology, and macroevolution

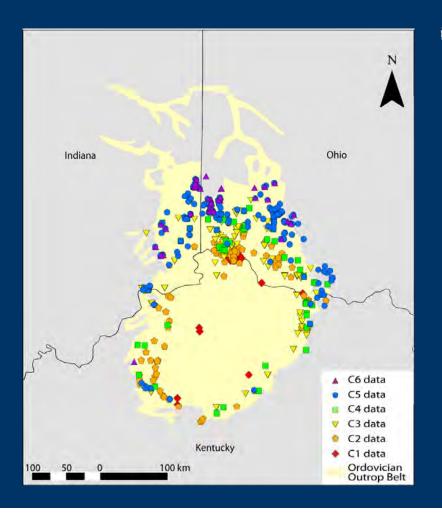
- Research questions:
 - Biodiversity crises
 - Interbasinal invasion / biotic interchange events
- Tools: integrated analyses of phylogenetic and environmental patterns

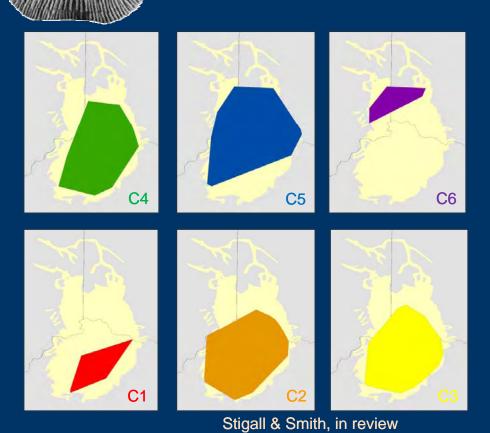




Case Study 3: Richmondian Invasion

- Late Ordovician invasion of taxa from W. North America into ENA
- Related to oceanographic changes (Holland & Patzkowsky, 1997)
- Ecological patterns well characterized (Holland & Patzkowsky, 2007)




Stratigraphic framework (after Holland & Patzkowsky, 1996)

GIS-based geographic range reconstruction

Entire species occurrence data set

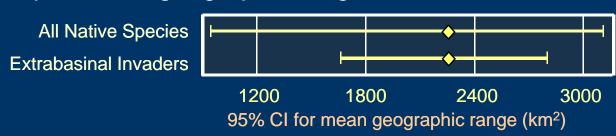
Geographic range of Hebertella occidentalis

Stratigraphic distribution of species

Native species: Restricted to Maysvillian

Native species: Carryover to Richmondian

Descendants of native species: Speciate in Richmondian

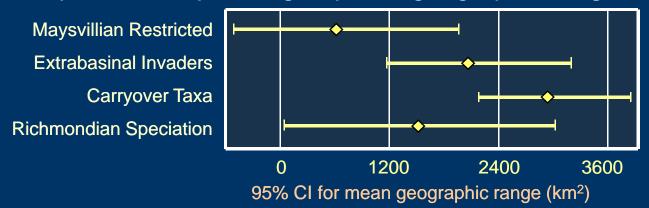

Richmondian extrabasinal invaders

Species	C1	: C2	: С3	C4	: C5	: C6
Dalmanella multisecta						:
Leptaena gibbosa			:	=	:	:
Platystrophia auburnensis			:		:	:
Platystrophia corryvillensis		:				
Platystrophia crassa			·		:	:
Platystrophia hopensis			:			:
Platystrophia morrowensis		:				:
Platystrophia sublaticosta						:
Plectorthis aequivalis			:		:	:
Plectorthis fissicosta						:
Plectorthis neglecta						:
Plectorthis plicatella			:		:	:
Sowerbyella rugosa			:		:	:
Strophomena maysvillensis						:
Strophomena planoconvexa						:
Zygospira cincinnatiensis			:		:	:
Dalmanella meeki			·			
Hebertella occidentalis		:				
Hebertella subjugata		·	:	Ī		
Platystrophia cypha		:	:			:
Platystrophia laticosta		:	:		:	:
Platystrophia ponderosa		:				
Rafinesquina alternata						
Zygospira modesta		:	:			:
Hebertella alveata		:				
Platystrophia acutilirata						
Platystrophia annieana			:		:	:
Platystrophia clarksvillensis			:			:
Platystrophia cummingsi						
Platystrophia elkhornensis			:			:
Platystrophia forestei			:			:
Platystrophia moritura		:				
Strophomena concordensis						:
Strophomena nutans			: 1			:
Strophomena planumbona			:		:	:
Strophomena sulcata		:				
Strophomena vetusta						
Austinella scovellei		:	:			•
Catazyga schuchertana			:		:	:
Eochonetes clarksvillensis		:				
Glyptorthis insculpta						:
Hiscobeccus capax			:		:	:
Holtedahlina sulcata						
Lepidocyclus perlamellosum		:				
Leptaena richmondensis			:			:
Plaesiomys subquadrata			:			:
Retrorsirostra carleyi						
Rhynchotrema denatum						
mynchotreina aenatam			•			•
Tetraphalerella nealecta			·		·	·

Stigall & Smith, in review

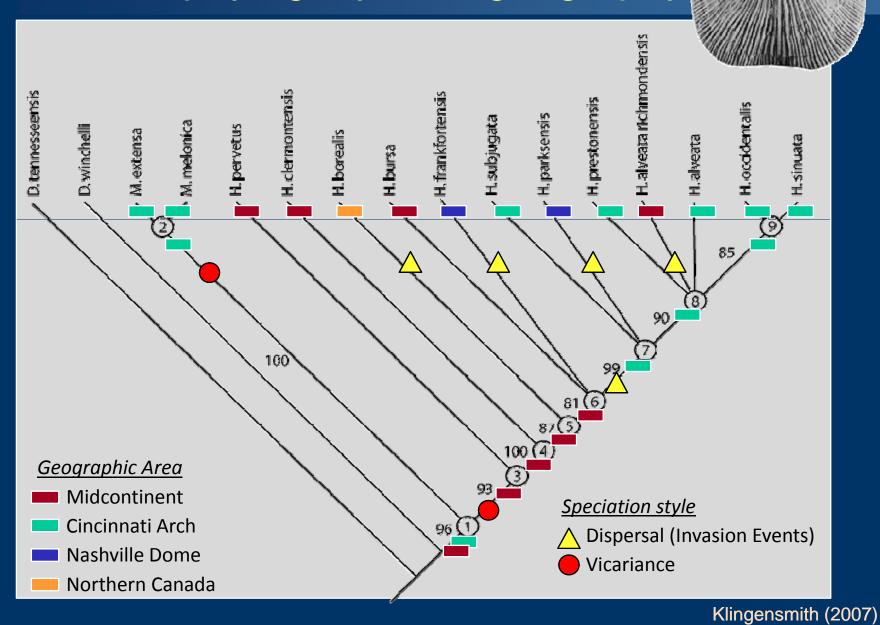
Native species vs. extrabasinal invaders

1. Comparison of geographic range of native vs. invasive species


T-test: N = 59p = 0.998

2. Comparison of survival status of native species vs. geographic range

T-test: N = 39p < 0.0005


3. Comparison of species groups vs. geographic range

ANOVA: N = 59

p = 0.025

Hebertella phylogeny & biogeography

Integrating historical and ecological paleobiogeography

- Provides clues to evolutionary patterns and feedbacks often masked in single approach analyses
- In the Late Devonian and Late Ordovician case studies:
 - Preferential survival of species with wide geographic ranges (=ecological generalists)
 - Preferential survival of invader taxa (typically ecological generalists)
 - Reduced opportunities for vicariance
 - Decline in overall speciation rate
 - Increased invasions result in decreased speciation

Conclusions

- Quantitative methods provide new analytical rigor to paleobiogeography
- Potential to analyze complex paleobiological patterns
- Capacity for hypothesis testing and generation

Emerging research questions

- Relationship between species ranges and speciation
- Range expansion and contraction under shifting paleoecological regimes
- Impact of invasive species on community structure and macroevolutionary dynamics
- Mechanics of transitions between endemic and cosmopolitan faunas
- How ecology and geographic range impact extinction during both background and crisis intervals

Acknowledgements

- Collaborators: Bruce Lieberman
- Students: B. Klingensmith, K. Maguire, J. Smith
- Funding: Ohio University, ACS's Petroleum Research Fund

Referenced papers & figure sources

- Klingensmith, B.C., 2007. GIS-based biogeography of Cincinnatian (Upper Ordovician) brachiopods with special reference to *Hebertella*. Unpublished MS thesis, Ohio University, Athens, Ohio.
- Maguire, K.C., and Stigall, A.L. 2008. Paleobiogeography of Miocene Equinae of North America: A phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal. Palaeogeography, Palaeoclimatology, Palaeoecology, 267: 175-184.
- Rode, A.L., and Lieberman, B.S. 2002. Phylogenetic and biogeographic analysis of Devonian phyllocarid crustaceans. Journal of Paleontology, 76(2): 269-284.
- Rode, A.L., and Lieberman, B.S. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeography, Palaeoclimatology, Palaeogeography, 211(3-4): 345-359.
- Rode, A.L. 2004. Phylogenetic revision of the Devonian bivalve, *Leptodesma (Leiopteria)*. Yale University Postilla, 229: 1-26.
- Rode, A.L., and Lieberman, B.S. 2005. Integrating biogeography and evolution using phylogenetics and PaleoGIS: A case study involving Devonian crustaceans. Journal of Paleontology, 79(2): 267-276.
- Stigall, A.L. 2008. Tracking species in space and time: Assessing the relationships between paleobiogeography, paleoecology, and macroevolution, p. 227-242. *In* P. H. Kelly and R. K. Bambach (eds.) From Evolution to Geobiology: Research Questions Driving Paleontology at the Start of a New Century. The Paleontological Society Papers, volume 14.
- Stigall, A.L. 2008. Integrating GIS and phylogenetic biogeography to assess species-level biogeographic patterns: A case study of Late Devonian faunal dynamics. *In* P. Upchurch, A. McGowan, and C. Slater, (eds.), Palaeogeography and Palaeobiogeography: Biodiversity in Space and Time. CRC Press, expected publication December, 2008.
- Stigall, A.L., and Lieberman, B.S. 2006. Quantitative Paleobiogeography: GIS, Phylogenetic Biogeographic Analysis, and Conservation Insights. Journal of Biogeography, 33 (12): 2051-2060.
- Stigall, A.L., and J. Smith. GIS-based analysis of brachiopod biogeography in the type Cincinnatian: Quantifying biogeographic shifts across an the Richmondian Invasion. Palaeontologica Electronica, in prep.
- Stigall Rode, A.L. 2005. Systematic revision of the Devonian brachiopods *Schizophoria (Schizophoria)* and "*Schuchertella*" from North America. Journal of Systematic Palaeontology, 3(2): 133-167.
- Stigall Rode, A.L., and Lieberman, B.S. 2005. Using environmental niche modelling to study the Late Devonian biodiversity crisis, p. 93-180. *In* D. J. Over, J. R. Morrow, and P.B. Wignall (eds.), Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events: Towards an Integrated Approach. Developments in Palaeontology and Stratigraphy, Elsevier, Amsterdam.
- Stigall Rode, A.L., and Lieberman, B.S. 2005. Paleobiogeographic patterns in the Middle and Late Devonian emphasizing Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology, 222 (3-4): 272-284.